Divorcing Language Dependencies
from a Scientific Software Library

Gary Kumfert,
with
Scott Kohn, Jeff Painter, & Cal Ribbens

_CASC—

e Language Interoperability Tool
¢ You specify “interfaces” in our language

¢ We generate glue code between application
and library

e Part of a Component Framework
¢ Enables OOP in non-OOP languages

¢ Enables safe Dynamic Casting and
Querylinterface capabilities

CASC GKK 2

What | mean by
“Language Interoperability”

Scripting Driver

(Python)
Simulation Framework Visualization System
(C) (Java)

Solver Library
(C++)

Numerical Routines
(f90)

CASC GKK 3

Hand Coded Solutions

SWIG
/ 77 v\laiatform Dependent
C f90
C++ Python

Java

CASC

Objects, Virtual Functions, RMI &

Reference Counting: all from Babel

f77

C f90

C++ Python

Java

CASC

Babel generates glue code

machine
configuration
database

I & fr7
I 4 -
~>

SIDL interface| | | | parser B | analyzer || backend

description \ C++
—— / | Python :
XML repository
interface
description
/-

CASC GKK 6

Scientific Interface Definition
Language (SIDL)

version Hypre 0.5;
version ESI 1.0;
class
import ESI; exception
interface
package Hypre { package

interface Vector extends ESI.Vector {
double dot (in Vector y);
void axpy(in double a, in Vector y);

};

interface Matrix ({
void apply(out Vector Ax, in Vector x);

};

class SparseMatrix implements Matrix, RowAddressable {

void apply(out Vector Ax, in Vector Xx);

GKK 7

e Software to be “divorced” from its

language dependence

e Scalable parallel linear solvers and
preconditioners (LLNL)

e Implemented in ANSI C using MPI
e “Object Based”

CASC

Collaboration Objectives

e Babel side:
¢ demonstrate Babel technology
¢+ feedback from library developers

e Hypre side:
¢ Automatically create Fortran bindings
¢ Explore new designs
> Object-Oriented
» Component-Based
¢ Integrate other software
» C++ or F77

CASC GKK 9

Envisioned Architecture

“official” hypre
interface (ANSI C)

APeCamaoners

MPI

CASC GKK 10

Approach

e Ildentify minimal working subset of hypre
¢ Structured Solvers

e Create SIDL description

e Add base classes to create heirarchy

e Tie generated code to existing hypre library
o Iterate

CASC GKK 11

Problem: Creating wrong types

e SIDL has 3 types of objects
¢ interfaces - no implementations (pure abstract)

¢ abstract classes - partial implementations
¢ concrete classes - full implementations

interface Foo {
int doThis(in int i);
int doThat(in int i);

_ }
e Users were creating

abstract classes when
they meant to create |;;
concrete classes

class Bar implements Foo {
int doThis(in int 1);

class Grille implements Foo {
int doThis(in int i);
int doThat(in int i);

};

GKK 12

CASC

Solution: Fix The Grammar

e Added the “abstract” keyword

¢ Compiler issues error if a method is undefined and
class is not declared abstract

e Added the “implements-all” keyword

¢ declares all interface Foo {
int doThis(in int i);
methods as int doThat(in int i);
overridden }

¢ saves user typing |abstract class Bar implements Foo {
int doThis(in int 1);

};

CASC GKK 13

Problem: Managing all the Files

e Babel creates many source files

one set for each
class & interface

foo.f foo stub.h foo ior.h foo_skel.h foo_impl.h

foo.sidl

C

foo_stub.c foo ior.c foo_skel.cc foo_impl.cc

CASC GKK 14

Solution: Babel Generates
Makefile Macros

e A “babel.make” file is generated

IORSRCS =

IORHDRS =

foo ior.c \
bar ior.c \
grille ior.c

foo ior.h \
bar ior.h \
grille ior.h

e Users include it into their own makefiles
¢ They control the build rules
¢ We provide the file names

CASC

GKK 15

Problem: Incremental Development

e Library Developer would do the following:
¢ write SIDL file

¢ run Babel to generate bindings
¢+ hand edit “Impl” files to call their library code

#include “mylib.h”
int impl Foo doThis(Foo * self, const int i) ({

return mylib Foo doThis (

(mylib Foo*) self->userdata,
i

) ;

CAS

Problem: Incremental Development (2)

e Now assume this was done for 20 classes, each with
20 methods.

e Now assume a class needed a 21st method

e Babel would regenerate all files and wipe out
Developer’s edits

#include “mylib.h”
int impl Foo doThis(Foo * self, const int i) ({

return mylib Foo doThis (
(mylib Foo*) self->userdata,
i

) ;

CAS S

Solution: Code Splicing

e Added preservation of developer’s edits

e Code Splicer works line-by-line
¢ interleaves old code into new code

¢ looks for begin-end pairs embedded in comments

/* DO NOT DELETE splicer.begin(user-includes) */
#include “mylib.h”
/* DO NOT DELETE splicer.end(user-includes) */

int impl Foo doThis(Foo * self, const int i) {
/* DO NOT DELETE splicer.begin(Foo doThis) */
return mylib Foo_ doThis (
(mylib Foo*) self->userdata,
i
) ;
/* DO NOT DELETE splicer.end(Foo doThis) */

CASE GKK 18

Results

e Call hypre
¢ from C, F77, or C++
¢ on SPARC Solaris or DEC/OSF

¢ (more languages & platforms coming)

e No interference with MPI
e Babel overhead within runtime noise

CASC

Best Result: Change of Architecture

CASC

ANSI| C

“official” £}*

MPI

Babel Runtime

GKK 20

Reasons for Change

e Liked using the tool

e No Hand F77 bindings
¢ incompatible
¢ outdated

e Preferred discussing
designs in SIDL

¢ easy for email

¢ impossible to mix
implementation &
interface

e Convinced of Babel’s

longevity
CASC

e Babel enforces
regularity in code

e Liked automatic
reference counting

e Excellent compromise
between:

¢ Wanting
polymorphism and
OO0 techniques

¢ Wanting all ANSI C
for maximum
portability

GKK 21

Current & Future Work

e Language Support
¢ Current: C, C++, F77, Python (Client)
¢ Coming: Python(Server), Java, F90, Matlab

e Platform Independence
¢ Implies RMI / Distributed Computing
¢ SOAP

e Parallel Data Redistribution

e Babelization efforts_in LLNL
¢ hypre
¢ SAMRAI
¢ ALPS

CASC GKK 22

ompone

@llnl.gou

e Our Website
http://www.lInl.gov/ICASC/components

¢ Alexandria (Component Repository)
¢ Quorum (Online Voting)
¢ Generic Parallel Redistribution

e hypre
http://www.linl.gov/ICASC/hypre

UCRL-V(G-140349 Rev 1

Work performed under the auspices of the U. S. Department of Energy by Lawrence
Livermore National Laboratory under Contract W-7405-Eng-48

CASC GKK 24

Key to Babel’s Interoperability...

Scientific Interface ¢ b Intermediate Object
Definition Language Representation

™~ el
XML

CASC GKK 25

Business Component Frameworks

e CORBA e Enterprise Java Beans (EJB)
Language Independent Platform Independent
Wide Industry Acceptance Runs wherever Java does

Primarily Remoting
Architecture

e COM

CASC

Language Independent
Most Established

In Process Optimization
Network Transparent

GKK 26

Science
Business,Component Frameworks

e CORBA e Enterprise Java Beans (EJB)
Language Independent Platform Independent
Wide Industry Acceptance Runs wherever Java does
Primarily Remoting ‘% Language Specific
Architecture ‘% Potentially highest
‘% Huge Standard overhead
‘D No In-Process Optimization ¢ Al The Above
e COM ‘% No Complex Intrinsic
Language Independent Datatype
Most Established “0 No Dynamic

Multidimensional Arrays
‘% No Fortran77/90/95
bindings
‘D No Parallel Components

‘% No Concept of SPMD
Programming

In Process Optimization
Network Transparent
‘% not Microsoft Transparent

‘D Relies on sophisticated
development tools

CASC GKK 27

	Divorcing Language Dependencies from a Scientific Software Library
	What I mean by “Language Interoperability”
	Babel generates glue code
	Scientific Interface Definition Language (SIDL)
	Collaboration Objectives
	Envisioned Architecture
	Approach
	Problem: Creating wrong types
	Solution: Fix The Grammar
	Problem: Managing all the Files
	Solution: Babel Generates Makefile Macros
	Problem: Incremental Development
	Problem: Incremental Development (2)
	Solution: Code Splicing
	Results
	Best Result: Change of Architecture
	Reasons for Change
	Current & Future Work
	Key to Babel’s Interoperability...
	Business Component Frameworks
	Business Component Frameworks

